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Abstract

The book “Handbook of Finsler geometry” has been included with a CD containing an
elegant Maple package, FINSLER, for calculations in Finsler geometry. Using this pack-
age, an example concerning a Finsler generalization of Einstein’s vacuum field equations
was treated. In this example, the calculation of the components of the hv-curvature of
Cartan connection leads to wrong expressions. On the other hand, the FINSLER package
works only in dimension four. We introduce a new Finsler package in which we fix the
two problems and solve them. Moreover, we extend this package to compute not only
the geometric objects associated with Cartan connection but also those associated with
Berwald, Chern and Hashiguchi connections in any dimension. These improvements have
been illustrated by a concrete example. Furthermore, the problem of simplifying tensor
expressions is treated. This paper is intended to make calculations in Finsler geometry
more easier and simpler.
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Classification: 1.5, 1.9, 4.12.

Nature of problem: The FINSLER package [1] (included with [2]) has some problems: the wrong
calculations of the hv-curvature components of Cartan connection and the non-ability of com-
puting some curvature tensors in dimensions different from four. Moreover, it computes some
geometric objects in a non-simplified form.

Solution method: In the new package, the above mentioned problems have been solved. The
FINSLER package has been extended to be able to compute the geometric objects associated
with Berwald, Chern and Hashiguchi connections (besides those associated with Cartan connec-
tion) in any dimension. A technique for tensor simplification has been introduced.

Additional comments: Other new tensors or geometric objects not defined in the package can be
added in a similar manner.

Running time: The examples provided take only a few seconds to run.
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1. Introduction

Antonelli et. al. have had a good contribution in Finsler geometry computations using
MAPLE (cf. [1-3]). Rutz and Portugal [4] have introduced the remarkable FINSLER
package [5] (it is also included in a CD with the “Handbook of Finsler geometry” [6]).
They illustrated how to use this package by an example related to general relativity.

During the preparation of our paper [7], searching for some Finsler counterexamples,
we have encountered some problems concerning FINSLER package. In fact, we studied an
example in which the coefficients of Berwald connection are functions of positional argument
2 only. Hence, the space under consideration is Berwaldian and is thus Landesbergian.
It is well known that for a Landesberg space the hv-curvature Pf]‘k of Cartan connection
vanishes. But according to the package, the program calculated non-vanishing components
of Pl. After a deep reading of the source code (Finsler.mpl), we discovered an error in
the definition of P[]Lk (similar error is found in “Handbook of Finsler geometry, II 7 page
1154). Another problem with this package is that of dimension. If one considers a Finsler
space of dimension three, the package can not compute the components of the h-curvature
R?jk and hv-curvature Pfjlk of Cartan connection.

In our modified package we solve the above two mentioned problems. We illustrate
our modification and extension of the FINSLER package by treating a concrete example
of a three dimensional Finsler space. We calculate the curvature tensors of the four funda-
mental connections of Finsler geometry, namely, Cartan, Berwald, Chern and Hashiguchi
connections. The geometric objects, not defined in the FINSLER package, can be added
in a similar manner. We also propose a technique for simplifying tensor expressions.

2. Notations and preliminaries

In this section, we give a brief introduction to Finsler connections. For more details,
we refer, for example, to [6, 8-10].



Let (M, F) be a Finsler manifold. Let (z') be the coordinates of any point of M and
(y') a supporting element at this point. Partial differentiation with respect to z* (resp. ")
will be denoted by 0; (resp. ;). We use the following notations:

l; ;== O,;F = gijl! = gij%: the normalized supporting element; [* := yfi,

Ly = Oil;,

hij == Fli; = g;; — l;l;: the angular metric tensor,

Cij i= %@gij = %1515j3kF2: the Cartan tensor,

C%, = ¢"'Cpji: the (h)hv-torsion tensor,

7§k(m, Y) = %g"(ajgkr + 0kgjr — Org;i): the Christoffel symbols with respect to 9,
G'(x,y) == 374y7y": the components of the canonical spray associated with (M, F),
N} = 0;G": the Barthel (or Cartan nonlinear) connection associated with (M, F),
Gé B = ahN ]’ = 3h9jGi: the coefficients of Berwald connection,

0; :=0; — NJ &: the basis vector fields of the horizontal bundle,

I‘;k(x, y) = %g"(éjgkr + 6xgjr — 6,g;,): the Christoffel symbols with respect to ;.

A Finsler connection [11] on M is a triple FT' = (F},(z,y), N}(z,y), Cj,(z,y)) such
that, under a change of coordinates (z') — (z*), the geometric objects F;k(x, Y), Né(a:,y)
and C;k transform respectively as follows:
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Moreover, FT' defines two types of covariant derivatives:

e o= 0X;+ XJF) — X]F]

r+ jk-

Xily == OXi+X]C), — X.C].

Let FT' = (F;k, N;, C;k) be an arbitrary Finsler connection. The (h)h-, (h)hv-, (v)h-,
(v)hv- and (v)v-torsion tensors of FT are given respectively by [12]:

T, =F, —F

i : i
k> C’;, = the connection parameters Cj,

and the h-, hv- and v-curvature tensors of FT' are given respectively by [12]:
szk - akFZj - le;ku + CﬁlmP%, Sij = Q‘(jm{@kcﬁj + Chmkcim}a
where ;i { A} = Aji — Apj.



The Cartan connection is given by CT = (I, Nj, C%,), where T, N} and Cj, are

as defined above. The (h)hv-, (v)h- and (v)hv-torsion tensors of CT are:
= %g"@'kgrj, Rl = 6N! —6;N;,  Ph=0N!—T%,.
The h-, hv- and v-curvature tensors of CT" are:
ij 2 k) {5krh] + FZ’;Fink} + Chngka
Plijk = 3kr2j - Chk|j + OhmP}Z: Shjk =2, k){Chkaﬁj}-

The Berwald connection is given by BI' = (G;k, N:.0). The associated geometric
objects will be marked by a circle. The (v)h-torsion tensor of BT is given by:

The h-, and hv-curvature tensors of BI' are:
Rﬁzjk = Q[(M){(Sszﬁj + GZ;'Gink}ﬂ Plf'zjk = O

The Chern (Rund) connection is given by RT' = (I'%;, N;,0). The associated geo-
metric objects will be marked by a star. The (v)h- and (v )hv—torsmn tensors of RI" are:

* . . . . * . A . .
The h- and hv-curvature tensors of RI" are:
Xi i m i xi 3 i
hit = AG w0k, + Tl Pl = 0kl

The Hashiguchi connection is given by HI' = (G;k, N;, C;k) The associated geo-

metric objects will be marked by an asterisk. The (h)hv- and (v)h-torsion tensors of HI are:

The h-, hv- and v-curvature tensors of HI' are:
*i m Y
hik = (k) {5kth + GGt + Ch Rl ik
Phjk = Ok hji — Ohij’ hjk — Q[(j,k){Ohkcmj}-

Table 1: Fundamental linear connections [10]



o
2 Cartan Berwald Chern (Rund) Hashiguchi
Q
[}
=
é (Fl,, NI, Cl) | (T, NP.CR) | (Gl NT,0) (T, NPO) | (Gl N, CF)
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(V)v-torsion S%, 0 0 0 0
3 h h oh B RN
E h-curvature R, Ry, Ry, fijk }fzjk
C@ e}
% hv-curvature P?jk P[;k P?jk P%k P?jk
© v-curvature S?jk Szhjk 0 0 Szhjk = Szhjk
g .é h-cov. der. K;.“C Klio Kil* Kji-|k KI* = Klio
=E ilk ilk ilk ilk
8% v-cov. der. Kl K|y = 0K Kl = K|y, Kil), = Kjlk

3. Notes on the FINSLER package

In [4], Rutz and Portugal discussed and applied the FINSLER package they introduced

in [5]. This package is an extension of the RIEMANN package [3]. The FINSLER package
is included in a CD with the book [6], where an interesting example related to general
relativity, namely, a family of metrics known as the Schwarzschild solution to Einstein’s
field equations, has been treated. Important geometric objects and, in particular, the three
curvature tensors of Cartan connection have been computed.

When performing some applications using the FINSLER package, we have encountered

some problems. To show one of these problems, let us consider the following example. Let

M=RY,U={(z,y) e R*xR*: 2y # 0; ys # 0, ¥° + y2 + y2 # 0}. Let F be the Finsler
structure defined on the open subset U of T'M by:

F = \/x1y4 Y+ ys + 3.

Based on this package, the non-vanishing coefficients of Berwald connection are as follows:
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This shows that the coefficients of Berwald connection are functions of the positional argu-
ment 2’ only. Hence, the space under consideration is Berwaldian and is thus Landesber-
gian. Consequently, the hv-curvature Pz’;k, of Cartan connection should vanish identically.
However, the FINSLER package calculated non-vanishing components of Pz';k

After a deep study of the source code (Finsler.mpl), we have discovered some wrong
indices in the definition of P,. (Similar error is found in [6], page 1154). Another problem
with this package is the problem of dimension. If one considers a three dimensional Finsler
space, the package can not compute the components of the hh-curvature Rﬁjk and hv-
curvature PZ’;k of Cartan connection. The package response is that these objects are outside

dimension.

Summing up, we have two problems with the Rutz and Portugal’s package. The first
is the wrong calculations of the curvature ijlk The second is the disability of computing
R?jk and Pj;k in dimensions different from 4.

4. Improvement of the package

In this section, we solve the two above mentioned problems. Moreover, we extend the
package in order to compute various geometric objects associated not only with Cartan
connection but also with the other fundamental connections in Finsler geometry. And this
is for any dimension. Other geometric objects can be similarly added to the package. We
illustrate these tasks using a concrete example.

Rutz and Portugal have illustrated how to use the package [4]. However, let us recall
some instructions to make the use of this package easier. When we write, for example,
Nli,-j] we mean N;, i.e., a positive (resp. negative) index means that it is a contravariant
(resp. covariant) index. If one wants to lower or raise an index by the metric or the inverse
metric, he just changes its sign from positive to negative or vice versa. The command
tdiff (N[i-j], X[k]) means 9y N!, the command tddiff (N[i,j], Y[k]) means 0,N! and the
command Hdiff (N[i,-j], X[k]) means &, N;.

In addition to the definitions of geometric objects existing already in the FINSLER
package, we add other definitions by using the command definetensor. We rewrite the
correct expression of P and tackle the issue of dimension.

Now, let us illustrate what have been said before using a concrete example.
Let M = R U = {(x1,22,23;y1,y2,y3) € R®*xR3 : 23 # 0; y2 # 0, y124+432 £ 0} C TM.
Let F' be the Finsler structure defined on U by

It should first be noted that, according to Table 1, we have only three independent torsions,
namely, C’l-hj, R?j and PZJL So, we will compute these torsions for Cartan connection and we
will not repeat their calculation for the other connections.

Following the instructions of the FINSLER package, the following calculations can be

performed.

> restart;
> libname := libname, ‘c:/Finsler‘:
> with(Finsler);



vV VvV Vv

[ Deoordinates, Hdiff , K, connection, init, metricfunction, tddiff |

Dimension := 3:
coordinates(x1,x2,x3):
Dcoordinates(yl,y2,y3):

‘The coordinates are:®

X' =z
X? =22
X3 =2z3
‘The d-coordinates are:°
i yl
Y2 =y2
Y3 =98
Finsler structure F:
> F := sqrt(x3*y1~3/y2+y372);
L z3y13 2
F = yyg + y3

Plotting the Finsler structure in a special domain:

> plot3d(subs(x1=5,y3=5,F), yl = -2..2, y2 =-2..2,
> axes=BOXED, style=patch);

Metric tensor g;;:

> FO0:= y173%x3/y2+y372;

FO = 2 y32

> metricfunction(F0):
‘The components of the metric are:



33yl
Grizr = y,?
z3y13
Ga2:2 y23
Inverse metric tensor ¢¥:
> show(gli,jl);
gzlzrl — 4y2
3z3yl1
gx2332 — 4y—23
z3yl?
Supporting element [;:
> show(1[-1]);
L 3 z3y1?
! 2 Z/Q /z3y13;—2y2y32

Y3

z8y13+y2y32
y2

Angular metric tensor h;;:

le)’ -

3 asyl?
Iz1z2 = 9 y22

91523 = 1

zlx2 _ 2y22
z3y1?

z3z3 -1

1 z3y13

Ly = —=
* 2 22 z3y13+y2y3>2
Y — 2

> definetensor(h[-i,-j] = g[-i,-j]1-1[-i]1*1[-j],symm);

> show(h[-i, -j1);

§:1:3y1 (x3y13 + 4y2y32)

h$ x
el 4 y2 (xé’yl?’ + y2y3’2)
b B _§ 3y12%y3
T 223y13 + y2y3?
1 z3y13y3
Rayas = 9 3 2
y2 (9;3y1 + y2y3 )

Cartan tensor Cjj;:

> show(C[-i,-j,-k1);

3x3
Cxlrlwl §y_2

3z3y1>
CxlexQ 5 y23

Spray coefficients G*:

3a3y1? (z3y1® + 2y2y3?)

h:r 2 — —
e 4 y2 (x3y13 + y2y32)
L 1 z3y13 (3x3y13 + 4y2y32)
B4 23 (a8yl® + y2y3?)

z3y13
8y13 + y2y3*

r3x3 T

3x3yl
Ca:;rz = 3
e 2 y2?
3z3yl3
ngq;gxg = __x y4
2 y2



> show(G[i]);

Gm] —

GIS’ —

1yl ys
2 z3
1 y13

4 y2

Nonlinear connection (Barthel connection) N;:

> show(N[i,-j1);
N
N3

x3
le

Coefficients of Berwald connection G;k:

> show(G[i,-j,-k]);
G:ﬁipl

zl
lex?)

x2
GzZ:):S

1y3
218
1y3
218
3yl?

4 y2

3yl
~34

1
213

1

213

Coefficients of Cartan connection I'};:

> show(Gammastar[i,-j,-k]);

i

Gammastary) ,

z3

Gammastary] .,

x2 o
Gammastary,i,, =

zl

Gammastary;,s =

z2 o
Gammastarys,, =

x2 o
Gammastarys,s =

1 98

5x5’y1
3yl

_§y_2
3 y3

_§x3y1
1

213

3 y3

213y2
1

213

Torsion tensors of Cartan connection

e (h)hv-torsion C}':
> show(C[i,-j,-k]);

1 y2y3
GI2 _
z3
- 1yl
Nx31 — 5 o
28
. 1y2
Nx?? =5
2x3
o Lyl
4 y2
G& = §£2
xlx2 4 y22
Lyl
x2x2 — 9 y23
Gammastar® | =
Gammastar®, , =
Gammastar®™ , =
Gammastar®y , =
Gammastar® , =

3 y2y3
2a3y1”
1 98
_§$3y2
3y1?
4y2°
1 ylys
203y2?
1y13
_QW




1 1
C:r] — Cxl —
zlzl yl rlz2 yg
yl 3y2
Cm] — _ I C:c 2 _ _ I~
Cifry = ol w2 = — ")

e (v)h-torsion R}:
> definetensor(RN[i,-j,-k]=Hdiff (N[i,-j],X[k])-Hdiff(N[i,-k],X[j1));
> show(RN[i,-j,-k]);

1 yi3 3 y1?
xl _ 2 _
RlexQ - _§x3y22 RNwla:2 - _él’gyg
1 y8 3 y1?
xl _ x3 _
Rlemii - _11‘32 Rlex?» - §x3y2
1 y3 1 y1?
RN:E.? — __9J7 RN:EB - _
x2x3 41,32 x2x3 8x5’y22

e (v)hv-torsion P/::
> definetensor(PT[i,-j,-k] = G[i,-j,-k]- Gammastar[i,-j,-k]):
> show(PT[i,-j,-k]);

1
223yl 2z3y1
1 y3 3 y3
PT;zlzz = PT;EEIQSEQ -7
2x3y2 223yl
1 y1
oY Zoy

Curvature tensors of Cartan connection

e h-curvature tensor R,

> definetensor(RC[i,-h,-j,-k] = Hdiff (Gammastar[i,-h,-j],X[k])
> -Hdiff(Gammastar[i,-h,-k], X[j])+Gammastar[m,-h,-j]
> *Gammastar[i,-m, -k]-Gammastar[m,-h,-k]*Gammastar[i,-m,-j]
> +C[i,-h,-m]*RG[m,-j,-k], antisymm[3,4]):
> show(RC[i,-h,-j,-k]);
3 yl? 1 yi?
RC%! = ——— RC%! =—-—
zlzlz2 8 $3y22 z2x1x2 4 $3y23
3 yl 3 yl1?
RO:UQ —- _ - RCQJ? - -2
rlxlx2 4 I3y2 z2zxlx2 8 $3y22
1 3 yl
RCY% . = — RC# o=~
3x1x3 4$32 rlxlz3 4 IES):I/Q
3 yl? 1
3 2
ROzQz]zé’ - _§I3y22 ROz?a:?zé’ = _4$32
3 yl? 1 yi?
ché’ - _Z Rng - -
xlx2z8 8 xngQ z2x2x3 4 $3y23

10



e hv-curvature tensor P!, :

vV V. V V V

>
>

>

vV V V V

ijk*
definetensor(FT[i,-j,-k,-h] = Hdiff(C[i,-j,-k], X[h])
+Gammastar [i,-h,-u]l*C[u,-k,-j]-Gammastar [u,-k,-h]*C[i,-u,-j]
—-Gammastar[u,-h,-j]*C[i,-u,-k]):
definetensor(PC[i,-h,-j,-k] = tddiff(Gammastar[i,-h,-j],Y[k])
_FT[i:_h:_k:_j]+C[i:_h:_m] *PT[m,_J :_k] ),
1 o1 1
Ozf;’:vla:l = _23:3y1 z8rlzd — W
1 1 yl
Om] — C’ P A
3 y2 3
PC’ = ———— PC —_—
3 3
PC’ = PC’ —_—
3 3yl
z8
POxlxlxl = _m PC xlziz? — 4@
3 yl 3y1?
Oz]:u@a:l = ZW O:vlz?a:? ZW
3 yl 3y1?
CZEQI][E] = ZW Cx?x]z? = ZW
3yl? 3yl
PC% = ——Z= PC% —
z2x2x1 4 y 23 221212 — 4 y 24
e v-curvature tensor Szjk'
definetensor(S[i,-h,-j,-k] = C[m,-h,-k]*C[i,-m,-j]
-C[m,-h,-jl*C[i,-m,-k]):
show(S[i,-h,-j,-k]);
ka 0
Curvature tensors of Berwald connection
h-curvature tensorRmk
definetensor (RB[i ,~h, =] ,—k]= Hdiff(G[i,-h, —j] , X[k1)
-Hdiff(G[i,-h,-k], X[j1)+G[m,-h,-jl1*G[i,-m,-k]
-G[m,-h,-k]*G[i,-m,-j], antisymm[3, 4]):
show(RB[-i,h,-j,-k]);
3 y1? o1 1 y13
RBypme = T8 2942° RB 5100 = 123923
3 yl 3 yl?
RB™ . = _° RBZ o = =——
rlxlz2 4 If))yg z2x1x2 8 11732/22
1 3 yl
RB* = ——— RB%}
z3rlxs 45532 zlzlz8 — 4 I3y2
3 y1? 1
z3 z2

11




z3 _
RB rlxzlx8

o
e hv-curvature tensor P?jk:

3 yl1?
8 131y2>

z3 — 1 y13

> definetensor(PB[i,-h,-j,-k]= tddiff(G[i,-h,-jl,Y[k])):

> show(PB[h,-i,-j,-k]);
3
PBJS:EI:EJM

8
PBJ:IIQJ:Q

_ 3
2y2
3yl?

2923

- 3yl
. 3yl

Curvature tensors of Chern connection
Xh
e h-curvature tensor R;:

> definetensor(Rchern[i,-h,-j,-k] = Hdiff(Gammastar[i,-h,-j], X[k])
> -Hdiff(Gammastar[i,-h,-k],X[j])+Gammastar[m,-h,-j]l*Gammastar[i,-m,-k]
> -Gammastar [m,-h,-k]*Gammastar[i,-m,-j], antisymm[3,4]):
> show(Rchern[i,-h,-j,-k]);
T 1 yI 2 z 3 y12
Rchernﬂ]ﬂmg = —gxg—y22 RCh@?”nmgﬂxg = —gmg—yQQ
RCheTn’:vjxlacf)’ _Z 1_32y1 RChernméwl:vB = ZW
x 1 . 3 yly3
Rchernzgxm = _W Rchernx?ﬂmg = _ZW
3 y3 3 yl
RChernxm,ngZm3 - Z $32y1 RChernxmfﬂxS’ = 4_1 .CL’3 yQ
3 yl? 1 y3
Reh z3 - _° Rech zl - __J7
CRETN 305128 8 18y2? CET Ty 13053 473%y2
- 1 ylyS3 " 3 y3
RCh@Tﬂxézgxg —ZW Rchernmfmgﬁ = ZW
= 3 y3 I 1
RCheTn’x,nga:é’ = _Z x3’2y2 RChernacf?x?zé’ = _W
" 3 yl? . 1 yi13
Rchernxfzgxg = —gw—ygz Rchernxgmm = ng—yg?’

*
e hv-curvature tensor Pfjk:

> definetensor(Pchern[i,-h,-j,-k]=tddiff (Gammastar[i,-h,-j],Y[k])):
> show(Pchern[h,-i,-j,-k]);

1 y3 1
PChern:fllmlwl = —5% PCheT’I’L;;]Zmlxg = 23—1
T3Y T3y
" 3y2y3 " 3 y3
Pchemmgxlxl = — x3y13 Pchemxfﬂxg = 51’3’—3;12

12



z2
Pcherny; . .g
z83
Pchernyy, .o
xl
Pchern;,o.9
z2
Pcherny o9
83
Pchern; .0
xl
Pcherny,o.0

z2
Pchernyy .0

z8
Pcherny,.o.,

3 y2
213y1>
3yl
2922
1
_2x3y2
3
223yl
3y1?
_§ﬁ
ylys
_xé’y,??’
3 ys
_§x3’y22
3yl?
_§ﬁ

3

Pcherny?, . = 292
Pchern}] g, = %gﬁy—jg?
Pchernyy,y,, = ;ﬁy—}
Pchernl} o, = 257]2
Pcherngy,g,, = %;&?y—jﬁ
Pcherng},g,s = %wy—ng?
Pcherns,p,g = ﬁ
Pchernls o,y = g%i

Curvature tensors of Hashiguchi connection

*

e h-curvature tensor R?jk:

> definetensor(RH[i,-h,-j,-k] = Hdiff(G[i,-h,-j], X[k])

> -Hdiff(G[i,-h,-k],X[j])+G[m,-h,-jI*G[i,-m,-k]-G[m,-h,-k]*G[i,-m,-]]

> +C[i,-h,-m]*RG[m,-j,-k], antisymm[3, 4]):

> show(RH[i,-h,-j,-k]);
RH ., = —gﬂg;; RH 100 = %%;23
RHfzgmsz - _% xgzg RH;@%M,@ = ngy;Q
Rl = jrom R =05
RH;;xlzé’ = _4;32 RH;]Qacle = Z;ﬁ—zi
RH;,nglxg _Zz’é’y—yg]? RH;JBMIB = z x;ﬂyg
RHZ = 50 o RHIL, - b
RH;?IIQxS = i% RH;JQxQJ:E = _Z Ig@/j 12
RHY .5 = Zx ;ng P RH 5,5 = _igﬂ
RH® , . = —gxg;; RH, 5,5 = %lxé’Ly;

*

e hv-curvature tensor P, :

ijk*
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> definetensor(PH1[i,-h,-k,-jl=Hdiff(C[i,-h,-k],X[j1)+G[i,-m,-j]
> *C[m,-h,-k]-G[m,-h,-j1*C[i,-m,-k]-G[m,-k,-jI*C[i,-h,-m]):
> definetensor(PH[i,-h,-j,-k] =
> tddiff(G[i,-h,-j], Y[k])-PH1[i,-h,-k,-j], symm[2,4]);
> show(PH[h,-i,-j,-k]);
. 1 y3 . 3y2ys
PHxllzI:r] = 3 9 PH:L‘JQxlxl = 3
223yl x3yl
. 3 y3 . 3
PH:L‘12$2$1 = 5 2 PH:EIZ);I.TZ = T 5
223yl 4y2
. 3 y] . 1 y5’
PHxlf);:Qxl = ZW PHIJZxQzQ = _51'3—:1/22
3 ys 3 yl
z2 z3
PHmeI:rQ - _éw—y]Q PHxZII:tQ = ZW
. 3y1? . 1
PHx.ﬁEQxZ = T 753 PHIJZx]xB’ = -
492 2z5yl1
. 1 . 3 y2
2z3y2 223yl
. 3 . 1 y3
PH:U12552333 = PH:UQI:CLTQ =75 2
2z3y1 2x3y2
ylys 5 3 y3
PH:E] _ PH?® _ <
3yl? 3yl
z3 3
1 1y
PH"! _ PH*! - _ g7
2z5yl1 2283 y2

The v-curvature of Hashiguchi connection is the same as the v-curvature of Cartan con-
nection.

Remark 4.1. According to the above consideration, if we calculate the hv-curvature P of
Cartan connection, in the example mentioned in Section 3, we find that the components
ng vanish identically as expected.

5. Tensor simplification

It is well known that the simplification of tensor expressions is not an easy task [13].
However, we have noted that if we have a complicated formula of a geometric object, such
as Pj}k, we can significantly simplify its expression as follows. We let the package compute
the tensor Pyijr := g Py, (instead of Pl%) and ask it to show the tensor P/,

To illustrate this technique let us consider the following example.

Let M =R3, U = {(x1,22,23;y1,9y2,y3) € R3 x R3 : y1 # 0,42 # 0,y3 # 0}. Let I/
be the Finsler structure defined on U by

F = (x1y23 + y1%y3)1/3.
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For example, let us compute the component Si,, of the v-curvature tensor Sfjk of
Cartan connection.
> definetensor(SC[i,-h,-j,-k] = C[m,-h,-k]*C[i,-m,-j]
> -C[m,-h,-j]*C[i,-m,-k]):
Sczjk = Ci?llccfnj - CITZ‘ ik
> show(SC[i,-h,-j,-k]);

1 Y3yl (—xly23+y3y1 2):613/22 (y3y12—3xly23)

Sciixlgﬁ — 718 <$1y23+y3y12)4
o y3%y13z1y22(y3y12+3 21y2?)
27 (mly23+y3y12)4
1 ylzly2?(—zly23+y3y1?) y3 (-3 xly23+5y3y12?)
36 (m1y23+y3y12)4
1 ylzly2?(4y32y1t4+21ysy1221y23 49212920 ) ys
54 (x1y23+y3y12)4

The above expression is complicated. But, in fact, if we lower the index ¢ in the
above definition and use the command show(SC/i,-h,-j,-k]), then we have the following
simplification.

> definetensor(SC[-i,-h,-j,-k] = C[m,-h,-k]*C[-1i,-m,-j]

> -C[m,-h,-jl*C[-i,-m,-k]):

SCinjr = ChiCimj — CpiCimk,
> show(SC[i,-h,-j,-k]);
xl _ 1 y3ylxly2?
SlezlmZ 12 (x1y23+y3y12)2’

which is very simple compared with its expression before simplification.

Remark 5.1. Be careful when you lower or raise an index, this index should be lowerable
or raisable. For example, in the definition of P/}, we encounter the term ékfﬁlj (cf. §1).
The index 7 in this term can not be lowered since gim(akFZ;) + 3k(gimF}Z-). So we can
not use the command tddiff(Gammastar[-i,-h,-j], Y[k]). Such a problem can be treated as

illustrated below:

> definetensor(FT[i,-j,-k,-h]=Hdiff(C[i,-j,-k], X[h])
+Gammastar [i,-h,-ul*C[u,-k,-j]l-Gammastar [u,-k,-h]*C[i,-u,-]j]
-Gammastar [u,-h,-j1*C[i,-u,-k]);
> definetensor(PC[i,-h,-j,-k] = tddiff(Gammastar[i,-h,-j],Y[k])
-FT[i,-h,-k,-jl+C[i,-h,-m]*PT[m,-j,-k]);

PCij = tddiff (Gammastarzj) — FTij +Cj,, PT;
> show(PC[i,-h,-j,-k1);

PO _ 1 1 ] (31:1y26<—y12y3+31’1y2§)y12y3
rlzlzl 72 (:t]y23+y12y3) yl (xl y23+y12y3)
10y12(y12ys+3x1y2®)y25y3a1 g 212y2°(—y12ys+3c1y2?)
(z1y23+y12y5’>2 2 <x1y23+y12y3)2
5(y12y3+3$1 y23)y291}12 3 y23y14(—y12y5’+3x1 y23)y32
2 B 2
(21y23+y12y3) 2 (z1y23+y1%y3)
5y23y1*(y12y3+3z1y23)y32 9
( = Ju? 1521 y2° + y1?y3y2®
(x]y,? +yl y5’)
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This component can be simplified using the above mentioned technique.

> definetensor(FT[i,-j,-k,-h] = Hdiff(C[i,-j,-k], X[h])
+Gammastar[i,-h, ul*C[u,-k,-j]-Gammastar [u,-k,-h]*C[i,-u,-j]
-Gammastar [u,-h,-j1*C[i,-u,-k]);

> definetensor(ST[i,-h,-j,-k] = tddiff(Gammastar[i,-h,-j], Y[k]));
> definetensor(PC[-i,-h,-j,-k] = g[-m,-i]*ST[m,-h,-j,-k]
_FT[_i:_h,_k,_j]+C [_i,_h:_m] *PT[m:_j :_k] ) 5

PCinjk = gmi SThy — FTinkg + Cinm PT7},
> show(PC[i,-h,-j,-k]);
Pl 1 y23

zlzlzl — 1_6y1(x1y23+y3y12)’

which is simpler compared with its expression before simplification.

6. Conclusion

In this paper, we have achieved four objectives concerning the FINSLER package [4, 5]:

e The wrong calculation of the components of the hv-curvature tensor ng of Cartan
connection has been corrected

e Modifications have been made so that the h- and hv-curvatures of Cartan connection
(and other geometric objects) could be computed in all dimensions (not only dimension 4).

e The package has been extended to compute not only the geometric objects associated
with Cartan connection but also those associated with other fundamental connections of
Finsler geometry. Other definitions can be added similarly to the package.

e A technique for simplifying tensor expressions has been introduced.

Thanks to the FINSLER package, one is able to study various examples and counterex-
amples in Finsler and Riemannian geometries. For example, in [7, 14], we have studied
interesting counterexamples in Finsler geometry.
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